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PO Box 79, Moscow, USSR 

Received 11 July 1983, in final form 21 September 1983 

Abstract. Classical systems with the Hamiltonian H = $ ( p : + p : ) +  V , ( x , ) +  V2(r,)+ 
V, , (x ,  - x 2 )  are considered, which correspond to the interaction of a system of two particles 
on a straight line with an external field. New sets of potentials V , ,  V, ,  VI, are found, for 
which these systems are integrable. 

Classical integrable one-dimensional systems of interacting particles have been a subject 
of comprehensive study during the last ten years (a detailed review of the most 
important results can be found in Perelomov (1979)). There are also known integrable 
problems on the motion of particle systems in an external field with the Hamiltonian 

n n 

1 = 1  1'1 

H = c (tPf + Vl(X1)) + c Vl,(Xl - x , ) .  

V1,Ct) = V l ( 0  = P t 2 ,  (2) 

VI, ( 6 )  = a / sinh2 $6, 

(1) 

These include the Olshanetsky and Perelomov (1976) system: 

and the Adler (1977) system 

~ ~ ( 6 )  = P et. (3) 

Do other integrable systems exist with the Hamiltonian ( l )?  Here we present a 
positive answer to this question for n = 2, when for integrability only one function K 
of variables pl,  p 2 ,  x l ,  x2  is required to be found satisfying the equation 

{K ,  HIP = 0 (4) 
({ . . . }p are the Poisson brackets). 

Consider a Hamiltonian of the general form 

H = $ M + p 3 +  V ( X , , X 2 )  

and look for the function K as a polynomial in the momenta pl, p 2 :  

or 
I 2 i + l  

K = A i m ( x l ,  x2)p;lpii-"'+l 
i =O m=O 
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( 6 )  
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At I = 1 the systems with constants of motion ( 5 )  and (6) were studied by Whittaker 
(1927) and Holt (1982). 

Due to (4) the functions V(x,, x2), {Aim(xl, x2)} should obey a system of partial 
differential equations of first order (generally, nonlinear). 

In particular, for the functions (6) this system contains l z + 3 1 + 2  equations 

(m =0 ,  . . . ,21- l),  &- aAi 21 A- 3AlO aA,, +-=0 aAim+1 
ax, ax2 - 0, - 0, 

8x1 8x2 

(7) 

( s = l , .  . . , I - 1 ;  m=O, .  . . ,2s-1) ,  

The functions A,, are polynomials in x1 and x2 of degree 21 and (2I+  1) for (5) and 
(6) respectively; the compatibility condition of equations for is a linear equation 
of order 21 or (2I+  1) for V(xl, x2), coefficients of which are determined by {A,m}. 
Upon finding its solution dependent on 21 (or 21 + 1) arbitrary functions of one variable, 
equations for the other coefficients Aim in ( 5 ) ,  (6) lead either to a system of functional 
equations or to one functional equation for ( 5 ) ’  1 = 2 or (6), 1 = 1. 

Our aim is to find integrable systems with a Hamiltonian of the type (1) at n = 2 :  

V(X1, x2) = Vl(X,)+ VZ(X2) + V,,(x1- x2). (8) 

It can be shown that for (6) at I = 1 the above mentioned functional equation has no 
nontrivial solutions if we take V(xl, x2) to be functions of the type (8).  In the case 
of ( 5 ) ,  1 = 2 the structure of V(x,, x2) like (8) may appear, if we put 

A -1 A20 = A21 = A23 = A24 = 0, 22 - 2. 

Then the remaining equations (7) assume the form 

dAlo aAl l  J V  -- - +-=- aA12 aAl l  aV  -+-=- 
ax2 ax, ax2’ ax, ax2 ax,’ - 0, dAl2 8‘410 

ax, ax, 

-- av av - a V A l l  + 2--Alo. av ’ A ~ ~  - 2 -A 12 + A , , - , 
ax, ax, ax2 ax2 ax, 3x2 

Equations (9) can be easily solved, 
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Substituting (11)  into (10) we arrive at the functional equation for VI, Vz, V12, q1z: 
[~1z(x1+xz)-  vlz(x,-xz)1[v;(xz)- v;l (x1)]+2[~’r,(x,+x,)-  V ~ z ( X , - ~ z ) 1  

X [ v z ( X z ) -  V I ( X ~ ) I + ~ ~ ’ ; Z  ( X I  +%)[vi v‘; ( X I ) ]  

+ 3 v;, ( X I  - xz)[ v; (xz) + v; ( X I ) ]  = 0.  (12) 

I do not know the general solution Lo this equation. Some particular solutions for 
which all four functions V,, V,, VIZ, VIZ are different from zero correspond to systems 
studied by Olshanetsky and Perelomov at n = 2: 

(13) 

where either g: - 2gz + h g g z  = 0 ,  g l  f 0 ,  or g l  = 0, g ,  g z  are arbitrary, and P( a [ )  is 
the Weierstrass function. 

In the case of interest for physics, clz = 0, all solutions can be found for a ‘truncated’ 
functional equation 

VIZ(5) = C Z C S )  = g2P(a5) ,  V l ( 0  = VZ(5) = g:P(a5)+g:P(2a5) 

v lz (x*-xz ) [v~  ( 1 2 ) -  vll (xl) l+2v;z ( X I  -Xz)[V*(Xz)- VI(X1)l 

- 3 v;, ( X I  - x2)[ vi (xz) + v; ( X l ) ]  = 0. (14) 
Indeed, one may introduce new variables into (12), 

and new unknown functions connected with V,, Vz, VIZ by 

The functional equation (14) can be triply integrated, which reduces it to the functional 
equation without derivatives: 

L ( T + p ) - N ( T - p )  = ~ 1 ( p ) ~ 2 ( T ) + c 2 ( ~ ) r ] ( T ) + c 3 ( ~ )  (16) 
with c1, cz, c3 arbitrary functions of p. Expanding both sides of (16) in a power series 
in p we arrive at an infinite system of ordinary differential equations 

L(7)  - N ( T )  = C l ( o ) V 2 ( T )  + C z ( o ) 7 ( T )  

( d / d ~ )  k[L(  T )  - (- 1) k N (  T)] = C i k )  (0)  7‘) ’( 7 )  + C k k )  (0)  7 ( 7 )  4- C i k )  (o), 
For L( T )  # N (  T )  one can obtain an equation for the function v( T )  by eliminating L( T )  

and N ( T )  from the first, third and fifth equations of the system; for L ( T )  = N ( T )  one 
uses the second, fourth and sixth equations. Upon these simple calculations we find 
that solutions to (16) do exist provided that the function V ( T )  satisfies one of the two 
eipations 

d o ) ,  
k =  1 , 2 , .  . . . 

7” = dl( r] - r ] O ) ’ +  dZ(v - TO)+ d 3  

or 
7” = di(7 - 70)’+ dz + d3(7 - TO)-’.  

Thus, there exist two sets of solutions of (16) for which T (  T )  = a cosh( PT + y )  + b 
or q( T )  = [ a  cosh( PT + y )  + 6]1’2 + qO, where a, 6, p, y,  qo are arbitrary constants. 
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Equation (14) also has only two sets of solutions: 

V,(xl)=A1 C O S ~ ( ~ ~ X , +  Y ~ + ~ A ) + A ~ C O S ~ ( P X ~ +  ~ 2 + h ) ,  

V ~ ( X , )  = A 1  ~ 0 ~ h ( 2 / 3 ~ 2 + y 1 - 2 A ) + A 2 ~ 0 ~ h ( p ~ 2 + ~ 2 - A ) ,  (17a)  

V12(x, - x2) = A3[sinh($(xl - x2) 

and 

V2( ~ 2 )  = A 1  cosh( P x 2  + 71 - A),  
(17b) 

V12(x1-x2) = A2[sinh($(~l-x2)+A)]-2+A3[sinh($P(x1 - x 2 )  +$A)]-2, 

where p, A l ,  A 2 ,  A 3 ,  yl, y2, A are arbitrary constants. By a limiting procedure, one 
may obtain from the solutions (17a, b )  both the Olshanetsky-Perelomov system (2) 
and the Adler system (3) at n = 2. 

Particular solutions to the initial functional equation (12) may be pointed out, 
which have a structure similar to (17a, 6): 

Vi(Xi) = A i  cosh(Pxl+ YI +A), 

The existence of solutions to (12) different from (13), (17)-(18) remains still an 

In my opinion, a point of interest for physics is the following problems, the analysis 

(i) determination of the motion of particles in systems of the type (17a, b ) ;  
(ii) construction of the Lax pairs similar to the known ones in the limiting cases 

(2), (3) at n = 2. 
Systems defined by the potentials ( 1 7 4  admit an extension to systems of n interacting 
particles in the external field. The Lax pairs for these systems at n = 2 consist of (4 X 4) 
matrices for y1 = y2 or of (8 X 8) matrices for y1 Z y2. These results will be published 
elsewhere. 

open problem. 

of which is beyond the scope of this note: 
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